48 research outputs found

    Bi-Modality Anxiety Emotion Recognition with PSO-CSVM

    Get PDF

    Advances in Studies on Toxicity and Transformation of Zearalenone and Its Derivatives

    Get PDF
    Zearalenone (ZEN) is a mycotoxin produced by the Fusarium species, which has various toxic effects. The chemical structures of ZEN and its derivatives are similar to that of estrogen. When ingested by animals or humans, ZEN and its derivatives can lead to disturbance of estrogen balance, thereby harming the reproductive system. Moreover, they can alter gene structure and consequently affect gene expression, and can even cause damage to the immune system, thus weakening the immune response. ZEN is transformed and metabolized into ZEN derivatives during food processing or after absorption by animals and plants, and its toxicity is altered due to structural and physicochemical changes. Studying the toxicity of ZEN and its derivatives as well as their transformation and metabolism in various organisms is important for ensuring food security and mycotoxin toxicity risk assessment

    Surface passivation for highly active, selective, stable, and scalable CO2 electroreduction

    Get PDF
    Electrochemical conversion of CO2 to formic acid using Bismuth catalysts is one the most promising pathways for industrialization. However, it is still difficult to achieve high formic acid production at wide voltage intervals and industrial current densities because the Bi catalysts are often poisoned by oxygenated species. Herein, we report a Bi3S2 nanowire-ascorbic acid hybrid catalyst that simultaneously improves formic acid selectivity, activity, and stability at high applied voltages. Specifically, a more than 95% faraday efficiency was achieved for the formate formation over a wide potential range above 1.0 V and at ampere-level current densities. The observed excellent catalytic performance was attributable to a unique reconstruction mechanism to form more defective sites while the ascorbic acid layer further stabilized the defective sites by trapping the poisoning hydroxyl groups. When used in an all-solid-state reactor system, the newly developed catalyst achieved efficient production of pure formic acid over 120 hours at 50 mA cm–2 (200 mA cell current)

    A Combined Approach on RBC Image Segmentation through Shape Feature Extraction

    Get PDF
    The classification of erythrocyte plays an important role in clinic diagnosis. In terms of the fact that the shape deformability of red blood cell brings more difficulty in detecting and recognize for operating automatically, we believed that the recovered 3D shape surface feature would give more information than traditional 2D intensity image processing methods. This paper proposed a combined approach for complex surface segmentation of red blood cell based on shape-from-shading technique and multiscale surface fitting. By means of the image irradiance equation under SEM imaging condition, the 3D height field could be recovered from the varied shading. Afterwards the depth maps of each point on the surfaces were applied to calculate Gaussian curvature and mean curvature, which were used to produce surface-type label image. Accordingly the surface was segmented into different parts through multiscale bivariate polynomials function fitting. The experimental results showed that this approach was easily implemented and promising

    Engineering MoS2 Basal Planes for Hydrogen Evolution via Synergistic Ruthenium Doping and Nanocarbon Hybridization

    No full text
    Abstract Promoting the intrinsic activity and accessibility of basal plane sites in 2D layered metal dichalcogenides is desirable to optimize their catalytic performance for energy conversion and storage. Herein, a core/shell structured hybrid catalyst, which features few‐layered ruthenium (Ru)‐doped molybdenum disulfide (MoS2) nanosheets closely sheathing around multiwalled carbon nanotube (CNT), for highly efficient hydrogen evolution reaction (HER) is reported. With 5 at% (atomic percent) Ru substituting for Mo in MoS2, Ru‐MoS2/CNT achieves the optimum HER activity, which displays a small overpotential of 50 mV at −10 mA cm−2 and a low Tafel slope of 62 mV dec−1 in 1 m KOH. Theoretical simulations reveal that Ru substituting for Mo in coordination with six S atoms is thermodynamically stable, and the in‐plane S atoms neighboring Ru dopants represent new active centers for facilitating water adsorption, dissociation, and hydrogen adsorption/desorption. This work provides a multiscale structural and electronic engineering strategy for synergistically enhancing the HER activity of transition metal dichalcogenides

    Facile Fabrication of Ultrafine Palladium Nanoparticles with Size- and Location-Control in Click-Based Porous Organic Polymers

    No full text
    Two click-based porous organic polymers (CPP-1 and CPP-2) are readily synthesized through a click reaction. Using CPP-1 and CPP-2 as supports, palladium nanoparticles (NPs) with uniform and dual distributions were prepared through H<sub>2</sub> and NaBH<sub>4</sub> reduction routes, respectively. Ultrafine palladium NPs are effectively immobilized in the interior cavities of polymers. The coordination of 1,2,3-triazolyl to palladium and the confinement effect of polymers on palladium NPs are verified by solid-state <sup>13</sup>C NMR and IR spectra, XPS analyses, EDX mapping, and computational calculation. The steric and electronic properties of polymers have a considerable influence on the interaction between polymers and palladium NPs, as well as the catalytic performances of NPs. The ultrafine palladium NPs with uniform distribution exhibit superior stability and recyclability over palladium NPs with dual distributions and palladium on charcoal in the hydrogenation of nitroarenes, and no obvious agglomeration and loss of catalytic activity were observed after recycling several times. The excellent performances mainly result from synergetic effects between palladium NPs and polymers

    Tailorable Synthesis of Porous Organic Polymers Decorating Ultrafine Palladium Nanoparticles for Hydrogenation of Olefins

    No full text
    Two 1,2,3-triazolyl-containing porous organic polymers (CPP-C and CPP-Y) were readily synthesized through click reaction and Yamamoto coupling reaction, respectively. The effects of synthetic methods on the structures and properties of CPP-C and CPP-Y were investigated. Their chemical compositions are almost identical, but their physical and texture properties are different from each other. Ultrafine palladium nanoparticles can be effectively immobilized in the interior cavities of CPP-C and CPP-Y. The interactions between polymers and palladium are verified by IR, solid-state NMR, XPS, and EDS. Their catalytic performances are evaluated by hydrogenation of olefins. Pd@CPP-Y exhibits higher catalytic activity and recyclability than Pd@CPP-C. Hot filtration and the three-phase test indicate that hydrogenation functions in a heterogeneous pathway

    Analysis of Single Nucleotide Polymorphisms within ADAM12 and Risk of Knee Osteoarthritis in a Chinese Han Population

    No full text
    Objective. Osteoarthritis (OA) is a complex arthritic condition in which the genetic factor plays a major role. One of the candidate genes of is the ADAM12 gene, but no consistency has been reached till now. This study aims to investigate the potential role of four single nucleotide polymorphisms (SNPs) of the ADAM12 gene in susceptibility to knee OA and its progression in Chinese Han population. Methods. The rs1278279, rs3740199, rs1044122, and rs1871054 polymorphisms were genotyped and compared in a population based cohort consisting of 164 OA subjects and 200 age- and gender-matched controls. Results. The SNP rs1871054 was found with increased risk of OA susceptibility in comparing the genotype frequencies between the case and control groups no matter for which model of comparison (allele level, dominant model, recessive model, and extreme genotype model). Additionally, the SNP rs1871054 was found associated with increased OA severity according to the K/L grade. Conclusion. In summary, we have identified that the rs1871054 variant within the ADAM12 gene is a risk factor for increased osteoarthritis susceptibility and severity

    A Real-Time, Automatic MCG Signal Quality Evaluation Method Using the Magnetocardiography and Electrocardiography

    No full text

    Heteroatom-doped Carbon Spheres from Hierarchical Hollow Covalent Organic Framework Precursors for Metal-Free Catalysis

    No full text
    Covalent organic frameworks (COFs) with hollow structures hold great promise for developing new types of functional materials. Herein, we report a hollow spherical COF with a hierarchical shell, which serves as an effective precursor of B,N-codoped hierarchical hollow carbon spheres. Benefiting from the synergistic effects of hierarchical porosity, high surface area, and B,N-codoping, the as-synthesized carbon spheres show prospective utility as metal-free catalysts in nitroarene reduction. A mechanistic hypothesis is proposed based on theoretical and experimental studies. Boron atoms situated meta to pyridinic Natoms are identified to be the main catalytic active sites. The anti-aromaticity originating from the codoping of B and pyridinic N atoms, not charge distribution and deformation energy, is confirmed to play a pivotal role in the catalytic reaction
    corecore